Posts Tagged ‘assembly’

Genomic Assemblers:

September 15, 2014 Leave a comment

Here is the list of most commonly used assembler for genomic reads used. The list is extensive but by no means is complete. I will try to update as soon as I come across a new one. Help me keeping the list updated if you come across any new and interesting assembler I have missed.

ABySS: : Widespread adoption of massively parallel deoxyribonucleic acid (DNA) sequencing instruments has prompted the recent development of de novo short read assembly algorithms. A common shortcoming of the available tools is their inability to efficiently assemble vast amounts of data generated from large-scale sequencing projects, such as the sequencing of individual human genomes to catalog natural genetic variation. To address this limitation, we developed ABySS (Assembly By Short Sequences), a parallelized sequence assembler. As a demonstration of the capability of our software, we assembled 3.5 billion paired-end reads from the genome of an African male publicly released by Illumina, Inc. Approximately 2.76 million contigs ≥100 base pairs (bp) in length were created with an N50 size of 1499 bp, representing 68% of the reference human genome. Analysis of these contigs identified polymorphic and novel sequences not present in the human reference assembly, which were validated by alignment to alternate human assemblies and to other primate genomes.

SOAPdenovo: : Next-generation massively parallel DNA sequencing technologies provide ultrahigh throughput at a substantially lower unit data cost; however, the data are very short read length sequences, making de novo assembly extremely challenging. Here, we describe a novel method for de novo assembly of large genomes from short read sequences. We successfully assembled both the Asian and African human genome sequences, achieving an N50 contig size of 7.4 and 5.9 kilobases (kb) and scaffold of 446.3 and 61.9 kb, respectively. The development of this de novo short read assembly method creates new opportunities for building reference sequences and carrying out accurate analyses of unexplored genomes in a cost-effective way.

Velvet: : We have developed a new set of algorithms, collectively called “Velvet,” to manipulate de Bruijn graphs for genomic sequence assembly. A de Bruijn graph is a compact representation based on short words (k-mers) that is ideal for high coverage, very short read (25–50 bp) data sets. Applying Velvet to very short reads and paired-ends information only, one can produce contigs of significant length, up to 50-kb N50 length in simulations of prokaryotic data and 3-kb N50 on simulated mammalian BACs. When applied to real Solexa data sets without read pairs, Velvet generated contigs of ∼8 kb in a prokaryote and 2 kb in a mammalian BAC, in close agreement with our simulated results without read-pair information. Velvet represents a new approach to assembly that can leverage very short reads in combination with read pairs to produce useful assemblies.

ALLPATHS-LG: : Massively parallel DNA sequencing technologies are revolutionizing genomics by making it possible to generate billions of relatively short (~100-base) sequence reads at very low cost. Whereas such data can be readily used for a wide range of biomedical applications, it has proven difficult to use them to generate high-quality de novo genome assemblies of large, repeat-rich vertebrate genomes. To date, the genome assemblies generated from such data have fallen far short of those obtained with the older (but much more expensive) capillary-based sequencing approach. Here, we report the development of an algorithm for genome assembly, ALLPATHS-LG, and its application to massively parallel DNA sequence data from the human and mouse genomes, generated on the Illumina platform. The resulting draft genome assemblies have good accuracy, short-range contiguity, long-range connectivity, and coverage of the genome. In particular, the base accuracy is high (≥99.95%) and the scaffold sizes (N50 size = 11.5 Mb for human and 7.2 Mb for mouse) approach those obtained with capillary-based sequencing. The combination of improved sequencing technology and improved computational methods should now make it possible to increase dramatically the de novo sequencing of large genomes. The ALLPATHS-LG program is available at

Bambus2: Motivation: Sequencing projects increasingly target samples from non-clonal sources. In particular, metagenomics has enabled scientists to begin to characterize the structure of microbial communities. The software tools developed for assembling and analyzing sequencing data for clonal organisms are, however, unable to adequately process data derived from non-clonal sources. Results: We present a new scaffolder, Bambus 2, to address some of the challenges encountered when analyzing metagenomes. Our approach relies on a combination of a novel method for detecting genomic repeats and algorithms that analyze assembly graphs to identify biologically meaningful genomic variants. We compare our software to current assemblers using simulated and real data. We demonstrate that the repeat detection algorithms have higher sensitivity than current approaches without sacrificing specificity. In metagenomic datasets, the scaffolder avoids false joins between distantly related organisms while obtaining long-range contiguity. Bambus 2 represents a first step toward automated metagenomic assembly. Availability: Bambus 2 is open source and available from

Newbler: : In the last year, high-throughput sequencing technologies have progressed from proof-of-concept to production quality. While these methods produce high-quality reads, they have yet to produce reads comparable in length to Sanger-based sequencing. Current fragment assembly algorithms have been implemented and optimized for mate-paired Sanger-based reads, and thus do not perform well on short reads produced by short read technologies. We present a new Eulerian assembler that generates nearly optimal short read assemblies of bacterial genomes and describe an approach to assemble reads in the case of the popular hybrid protocol when short and long Sanger-based reads are combined.

MIRA: We present an EST sequence assembler that specializes in reconstruction of pristine mRNA transcripts, while at the same time detecting and classifying single nucleotide polymorphisms (SNPs) occuring in different variations thereof. The assembler uses iterative multipass strategies centered on high-confidence regions within sequences and has a fallback strategy for using low-confidence regions when needed. It features special functions to assemble high numbers of highly similar sequences without prior masking, an automatic editor that edits and analyzes alignments by inspecting the underlying traces, and detection and classification of sequence properties like SNPs with a high specificity and a sensitivity down to one mutation per sequence. In addition, it includes possibilities to use incorrectly preprocessed sequences, routines to make use of additional sequencing information such as base-error probabilities, template insert sizes, strain information, etc., and functions to detect and resolve possible misassemblies. The assembler is routinely used for such various tasks as mutation detection in different cell types, similarity analysis of transcripts between organisms, and pristine assembly of sequences from various sources for oligo design in clinical microarray experiments.

Euler-USR: : Increasing read length is currently viewed as the crucial condition for fragment assembly with next-generation sequencing technologies. However, introducing mate-paired reads (separated by a gap of length, GapLength) opens a possibility to transform short mate-pairs into long mate-reads of length ≈ GapLength, and thus raises the question as to whether the read length (as opposed to GapLength) even matters. We describe a new tool, EULER-USR, for assembling mate-paired short reads and use it to analyze the question of whether the read length matters. We further complement the ongoing experimental efforts to maximize read length by a new computational approach for increasing the effective read length. While the common practice is to trim the error-prone tails of the reads, we present an approach that substitutes trimming with error correction using repeat graphs. An important and counterintuitive implication of this result is that one may extend sequencing reactions that degrade with length “past their prime” to where the error rate grows above what is normally acceptable for fragment assembly.

Celera Assembler:

Minia:  : Minia is a short-read assembler based on a de Bruijn graph, capable of assembling a human genome on a desktop computer in a day. The output of Minia is a set of contigs. Minia produces results of similar contiguity and accuracy to other de Bruijn assemblers (e.g. Velvet).

Ray: : An accurate genome sequence of a desired species is now a pre-requisite for genome research. An important step in obtaining a high-quality genome sequence is to correctly assemble short reads into longer sequences accurately representing contiguous genomic regions. Current sequencing technologies continue to offer increases in throughput, and corresponding reductions in cost and time. Unfortunately, the benefit of obtaining a large number of reads is complicated by sequencing errors, with different biases being observed with each platform. Although software are available to assemble reads for each individual system, no procedure has been proposed for high-quality simultaneous assembly based on reads from a mix of different technologies. In this paper, we describe a parallel short-read assembler, called Ray, which has been developed to assemble reads obtained from a combination of sequencing platforms. We compared its performance to other assemblers on simulated and real datasets. We used a combination of Roche/454 and Illumina reads to assemble three different genomes. We showed that mixing sequencing technologies systematically reduces the number of contigs and the number of errors. Because of its open nature, this new tool will hopefully serve as a basis to develop an assembler that can be of universal utilization (availability: http://deNovoAssembler.sf.Net/). For online Supplementary Material,

Edena: : Novel high-throughput DNA sequencing technologies allow researchers to characterize a bacterial genome during a single experiment and at a moderate cost. However, the increase in sequencing throughput that is allowed by using such platforms is obtained at the expense of individual sequence read length, which must be assembled into longer contigs to be exploitable. This study focuses on the Illumina sequencing platform that produces millions of very short sequences that are 35 bases in length. We propose a de novo assembler software that is dedicated to process such data. Based on a classical overlap graph representation and on the detection of potentially spurious reads, our software generates a set of accurate contigs of several kilobases that cover most of the bacterial genome. The assembly results were validated by comparing data sets that were obtained experimentally for Staphylococcus aureus strain MW2 and Helicobacter acinonychis strain Sheeba with that of their published genomes acquired by conventional sequencing of 1.5- to 3.0-kb fragments. We also provide indications that the broad coverage achieved by high-throughput sequencing might allow for the detection of clonal polymorphisms in the set of DNA molecules being sequenced.

MSR-CA: : The MSR-CA assembler combines the benefits of deBruijn graph and Overlap-Layout-Consensus assembly approaches.  The strength of the deBruijn graph approach is in its ability to quickly create a graph representation of the genome assembly from the deep coverage short read data.  However in most cases the graph is extremely complex and it is hard to find a way to recover the original genome sequence from simply traversing it. On the other hand, overlap-layout-consensus is better suited for longer reads with high coverage, and since it usually relies on overlaps of 40 bases or longer, it is better for resolving short repetitive structures.

SGA: De novo genome sequence assembly is important both to generate new sequence assemblies for previously uncharacterized genomes and to identify the genome sequence of individuals in a reference-unbiased way. We present memory efficient data structures and algorithms for assembly using the FM-index derived from the compressed Burrows-Wheeler transform, and a new assembler based on these called SGA (String Graph Assembler). We describe algorithms to error correct, assemble and scaffold large sets of sequence data. SGA uses the overlap-based string graph model of assembly, unlike most de novo assemblers that rely on de Bruijn graphs, and is simply parallelizable. We demonstrate the error correction and assembly performance of SGA on 1.2 billion sequence reads from a human genome, which we are able to assemble using 54 GB of memory. The resulting contigs are highly accurate and contiguous, while covering 95% of the reference genome (excluding contigs less than 200bp in length). Because of the low memory requirements and parallelization without requiring inter-process communication, SGA provides the first practical assembler to our knowledge for a mammalian-sized genome on a low-end computing cluster.

SSAKE: : Novel DNA sequencing technologies with the potential for up to three orders magnitude more sequence throughput than conventional Sanger sequencing are emerging. The instrument now available from Solexa Ltd, produces millions of short DNA sequences of 25 nt each. Due to ubiquitous repeats in large genomes and the inability of short sequences to uniquely and unambiguously characterize them, the short read length limits applicability for de novo sequencing. However, given the sequencing depth and the throughput of this instrument, stringent assembly of highly identical sequences can be achieved. We describe SSAKE, a tool for aggressively assembling millions of short nucleotide sequences by progressively searching through a prefix tree for the longest possible overlap between any two sequences. SSAKE is designed to help leverage the information from short sequence reads by stringently assembling them into contiguous sequences that can be used to characterize novel sequencing targets. Availability: .

VCAKE: : Inexpensive de novo genome sequencing, particularly in organisms with small genomes, is now possible using several new sequencing technologies. Some of these technologies such as that from Illumina’s Solexa Sequencing, produce high genomic coverage by generating a very large number of small reads (∼30 bp). While prior work shows that partial assembly can be performed by k-mer extension in error-free reads, this algorithm is unsuccessful with the sequencing error rates found in practice. We present VCAKE (Verified Consensus Assembly by K-mer Extension), a modification of simple k-mer extension that overcomes error by using high depth coverage. Though it is a simple modification of a previous approach, we show significant improvements in assembly results on simulated and experimental datasets that include error. Availability:

QSRA: : New rapid high-throughput sequencing technologies have sparked the creation of a new class of assembler. Since all high-throughput sequencing platforms incorporate errors in their output, short-read assemblers must be designed to account for this error while utilizing all available data. Results: We have designed and implemented an assembler, Quality-value guided Short Read Assembler, created to take advantage of quality-value scores as a further method of dealing with error. Compared to previous published algorithms, our assembler shows significant improvements not only in speed but also in output quality. Conclusion: QSRA generally produced the highest genomic coverage, while being faster than VCAKE. QSRA is extremely competitive in its longest contig and N50/N80 contig lengths, producing results of similar quality to those of EDENA and VELVET. QSRA provides a step closer to the goal of de novo assembly of complex genomes, improving upon the original VCAKE algorithm by not only drastically reducing runtimes but also increasing the viability of the assembly algorithm through further error handling capabilities.

SHARCGS: : The latest revolution in the DNA sequencing field has been brought about by the development of automated sequencers that are capable of generating giga base pair data sets quickly and at low cost. Applications of such technologies seem to be limited to resequencing and transcript discovery, due to the shortness of the generated reads. In order to extend the fields of application to de novo sequencing, we developed the SHARCGS algorithm to assemble short-read (25–40-mer) data with high accuracy and speed. The efficiency of SHARCGS was tested on BAC inserts from three eukaryotic species, on two yeast chromosomes, and on two bacterial genomes (Haemophilus influenzaeEscherichia coli). We show that 30-mer-based BAC assemblies have N50 sizes >20 kbp for Drosophila and Arabidopsis and >4 kbp for human in simulations taking missing reads and wrong base calls into account. We assembled 949,974 contigs with length >50 bp, and only one single contig could not be aligned error-free against the reference sequences. We generated 36-mer reads for the genome of Helicobacter acinonychis on the Illumina 1G sequencing instrument and assembled 937 contigs covering 98% of the genome with an N50 size of 3.7 kbp. With the exception of five contigs that differ in 1–4 positions relative to the reference sequence, all contigs matched the genome error-free. Thus, SHARCGS is a suitable tool for fully exploiting novel sequencing technologies by assembling sequence contigs de novo with high confidence and by outperforming existing assembly algorithms in terms of speed and accuracy.

CABOG: : The emergence of next-generation sequencing platforms led to resurgence of research in whole-genome shotgun assembly algorithms and software. DNA sequencing data from the Roche 454, Illumina/Solexa, and ABI SOLiD platforms typically present shorter read lengths, higher coverage, and different error profiles compared with Sanger sequencing data. Since 2005, several assembly software packages have been created or revised specifically for de novo assembly of next-generation sequencing data. This review summarizes and compares the published descriptions of packages named SSAKE, SHARCGS, VCAKE, Newbler, Celera Assembler, Euler, Velvet, ABySS, AllPaths, and SOAPdenovo. More generally, it compares the two standard methods known as the de Bruijn graph approach and the overlap/layout/consensus approach to assembly.

Shorty: : New short-read sequencing technologies produce enormous volumes of 25–30 base paired-end reads. The resulting reads have vastly different characteristics than produced by Sanger sequencing, and require different approaches than the previous generation of sequence assemblers. In this paper, we present a short-read de novo assembler particularly targeted at the new ABI SOLiD sequencing technology. Results This paper presents what we believe to be the first de novo sequence assembly results on real data from the emerging SOLiD platform, introduced by Applied Biosystems. Our assembler SHORTY augments short-paired reads using a trivially small number (5 – 10) of seeds of length 300 – 500 bp. These seeds enable us to produce significant assemblies using short-read coverage no more than 100×, which can be obtained in a single run of these high-capacity sequencers. SHORTY exploits two ideas which we believe to be of interest to the short-read assembly community: (1) using single seed reads to crystallize assemblies, and (2) estimating intercontig distances accurately from multiple spanning paired-end reads. Conclusion We demonstrate effective assemblies (N50 contig sizes ~40 kb) of three different bacterial species using simulated SOLiD data. Sequencing artifacts limit our performance on real data, however our results on this data are substantially better than those achieved by competing assemblers.

Taipan: : Summary: The shorter and vastly more numerous reads produced by second-generation sequencing technologies require new tools that can assemble massive numbers of reads in reasonable time. Existing short-read assembly tools can be classified into two categories: greedy extension-based and graph-based. While the graph-based approaches are generally superior in terms of assembly quality, the computer resources required for building and storing a huge graph are very high. In this article, we present Taipan, an assembly algorithm which can be viewed as a hybrid of these two approaches. Taipan uses greedy extensions for contig construction but at each step realizes enough of the corresponding read graph to make better decisions as to how assembly should continue. We show that this approach can achieve an assembly quality at least as good as the graph-based approaches used in the popular Edena and Velvet assembly tools using a moderate amount of computing resources. Availability and Implementation: Source code in C running on Linux is freely available at

PCAP long-read assembler: : This unit describes how to use the Parallel Contig Assembly Program (PCAP) to assemble the data produced by a whole-genome shotgun sequencing project. We present a basic protocol for using PCAP on a multiprocessor computer in a 300-Mb genome assembly project. A support protocol to prepare input files for PCAP is also described. Another basic protocol for using PCAP on a distributed cluster of computers in a 3-Gb genome assembly project is presented, in addition to suggestions for understanding results from PCAP.;jsessionid=D1E990D19BC5B53F5145818C47152BE5.f04t03

Seqcons: : Motivation: Novel high-throughput sequencing technologies pose new algorithmic challenges in handling massive amounts of short-read, high-coverage data. A robust and versatile consensus tool is of particular interest for such data since a sound multi-read alignment is a prerequisite for variation analyses, accurate genome assemblies and insert sequencing. Results: A multi-read alignment algorithm for de novo or reference-guided genome assembly is presented. The program identifies segments shared by multiple reads and then aligns these segments using a consistency-enhanced alignment graph. On real de novo sequencing data obtained from the newly established NCBI Short Read Archive, the program performs similarly in quality to other comparable programs. On more challenging simulated datasets for insert sequencing and variation analyses, our program outperforms the other tools.Availability: The consensus program can be downloaded from It can be used stand-alone or in conjunction with the Celera Assembler. Both application scenarios as well as the usage of the tool are described in the documentation.

De-Novo Transcriptome Assembly and Annotation

March 14, 2014 1 comment
ranscriptome sequencing (RNA-seq) helps to find gene expression, reconstruct the transcripts, SNP detection and alternate splicing. There are two assembly approaches i.e. Genome dependent (alignment to reference genome) and genome independent (de novo assembly). De-novo assembly is the process of constructing a reference genome sequence for a newly sequenced organism. And it is necessary because for reference based sequencing reference genome is required and this approach is not useful for organism having partial or missing reference genome. Secondly genome sequences are incomplete, fragmented and altered.  The disadvantage of genome assembly over transcriptome assembly is its inability to account for structural alterations of mRNA transcripts, i.e. alternative splicing.
In RNA-seq first mRNA is extracted and purified from cell and then reverse transcribed to create cDNA library with the help of high-throughput sequencing techniques. This cDNA is fragmented into various lengths.
Algorithm behind assembly is so simple, cDNA sequence reads are assembled into transcripts by using any short read assembler, here we are using ‘SOAPdenovo-Trans’. Short read assemblers generally one of two basic algorithms: overlap graphs – compute pairwise overlap between the reads and capture this information in a graph. De-Bruijin graph: breaks the reads into smaller sequences of DNA, called K-mers, and captures overlaps of length k-1 between these k-mers not between reads. As the number of reads are growing day by day and it is getting difficult to determine which read should be joined to contiguous sequence contigs, so, de-Bruijin is the solution of this problem in which a node is defined by fixed length of k-mer and nodes are connected by edges, if they overlap by k-1 nucleotide.
 De novo assembly work flow
Input files
Paired-end RNA-seq reads of P.chabaudi in fastq format
File 1:         ERR306016_1.fastq
File 2:         ERR306016_2.fastq
Exercise 1. Quality control check using fastQC
Shell command for running fastQC on the read file:
./fastqc ERR306016_1.fastq
A.    Removal of adaptor sequences using FASTX-Toolkit
Shell command:
./fastx_clipper -a -l -C -i ERR306016_1.fastq -o new_ERR306016_1.fastq
B.    Run Quality check again on trimmed files i.e. new_ERR306016_1.fastq and new_ERR306016_2.fastq
Shell command:
Repeat Exercise 1 for ERR306016_2.fastq
Exercise 2. De novo assembly of reads as well as RPKM calculation using
Shell command:
./SOAPdenovo-trans-127mer all -k 23 -R -s sample.conf  -o plas_R
Clustering of resulted contigs or transcriptome using TGICL
Shell command:
./tgicl plas_R.contig
Result will be clustered contig indexes and singletons indexes (contigs which are not in cluster) and asm_1 directory containing CAP3 assembly result. If no singleton file form means all contigs are clustered. Contig sequence and Singlets sequence files inside the asm_1 directory are merged together using linux ‘cat‘ command


Shell command:
cat contig singlets > contig_singlets.txt
Retreive the indexes from the cluster file by using ‘grep’ and ‘sed’
grep -v ‘CL’ plas_R.contig_clusters > contig_index.txt
Substitute the tab space with next line using ‘sed’ command.
sed ‘s/\t/\n/g’ contig_index.txt > contig_index_new.txt
Retreive the clustered contig sequences from SOAPdenovo-trans assembled contig file ‘plas_R.contig’
grep -Fxv -f contig_index_new.txt plas_R.contig > final_singletons.txt
Merge the ‘contig_singlets.txt’ into “final_singletons.txt” using ‘cat’ command
cat contig_singlets.txt final_singletons.txt > final_assembled_transcriptome.txt
Exercise 3. Read mapping using SeqMap
Shell command:
./seqmap 2 ERR306016_1.fastq plas_R_contig.fasta > seqmap_output.txt /eland:3 /available_memory:8000
Exercise 4. Annotation using standalone ncbi-BLAST and online tool KOBAS
Shell command:
./makeblastdb -in /home/user/Desktop/NGS_Workshop/jyoti/kobas_data/p.chabaudi.pep.fasta -input type ‘fasta’ -title ‘plasmo_db’ -dbtype ‘prot’
./blastx -db /home/user/Desktop/NGS_Workshop/jyoti/kobas_data/p.chabaudi.pep.fasta -query /home/user/Desktop/NGS_Workshop/jyoti/plas_R.contig/ -out /kobas_input.fasta/ -outfmt 6
Run KOBAS using ‘kobas_input.fasta’
KOBAS is available on the following url:


%d bloggers like this: